14

THE INFLUENCE OF BULKY SUBSTITUENTS IN FLUORINE CHEMISTRY

H. W. Roesky, N. Bertel, F. Schrumpf, M. Scholz, M. Sotoodeh, Xu Yuming and M. Zimmer
Institut für Anorganische Chemie der Universität Göttingen,
Tammannstrasse 4, D-3400 Göttingen (F.R.G.)

The preparation of Cp^*TaF_4 ($Cp^* = C_5Me_5$), Cp^*NbF_4 and $CpNbF_4$ is reported. On the basis of an X-ray structural analysis it is shown that Cp^*TaF_4 forms a dimer in the solid state. Fluorine compounds containing Cp^* groups are easily soluble in organic solvents. The fluorine atoms in Cp^*TaF_4 may be replaced by other substituents. In contrast to TaF_5 or NbF_5 , WF_6 can be used directly to generate tungsten containing heterocycles. The new ligand $Me_2S(NPPh_2NSiMe_3)_2$, prepared from $Me_2S(NPPh_2)_2$ and Me_3SiN_3 , reacts with WF_6 to form the heterocycle $Me_2S(NPPh_2N)_2WF_4$. The X-ray single-crystal structure analysis exhibits a puckered eightmembered ring with alternating short and long bond lengths.

Furthermore we have investigated the chemistry of 1,3,5tris(trifluoromethyl)benzene and 1-dimethylamino-3,5bis(trifluoromethyl)benzene as bulky ligands in compounds of main
group and transition elements. It will be shown that new compounds
containing elements in low co-ordination numbers can be isolated.